Activation of oxazaphosphorines by cytochrome P450: application to gene-directed enzyme prodrug therapy for cancer.
نویسندگان
چکیده
Cancer chemotherapeutic prodrugs, such as the oxazaphosphorines cyclophosphamide and ifosfamide, are metabolized by liver cytochrome P450 enzymes to yield therapeutically active, cytotoxic metabolites. The effective use of these prodrugs is limited by host toxicity associated with the systemic distribution of cytotoxic metabolites formed in the liver. This problem can, in part, be circumvented by implementation of cytochrome P450 gene-directed enzyme prodrug therapy (P450 GDEPT), a prodrug activation strategy for cancer treatment that augments tumor cell exposure to cytotoxic drug metabolites generated locally by a prodrug-activating cytochrome P450 enzyme. P450 GDEPT has been exemplified in preclinical rodent and human tumor models, where chemosensitivity to a P450 prodrug can be greatly increased by introduction of a prodrug-activating P450 gene. Further enhancement of the efficacy of P450-based gene therapy can be achieved: by co-expression of P450 with the flavoenzyme NADPH-P450 reductase, which provides electrons required for P450 metabolic activity; by metronomic (anti-angiogenic) scheduling of the prodrug; by localized delivery of the prodrug to the tumor; and by combination with anti-apoptotic factors, which slow the death of the P450 'factory' cells and thereby enhance the bystander cytotoxic response. P450 GDEPT has several important features that make it a clinically attractive strategy for cancer treatment. These include: the substantial bystander cytotoxicity of P450 prodrugs such as cyclophosphamide and ifosfamide; the ability to use human P450 genes and thereby avoid an immune response to the therapeutic gene; the use of well-established conventional chemotherapeutic prodrugs, as well as bioreductive drugs activated by P450/P450 reductase in a hypoxic tumor environment; and the potential to decrease systemic exposure to active drug metabolites by selective inhibition of hepatic P450 activity. Recent advances in this area of research are reviewed, and two proof-of-concept clinical trials that highlight the utility of this strategy are discussed.
منابع مشابه
Cytochrome P450 gene-directed enzyme prodrug therapy (GDEPT) for cancer.
Several commonly used cancer chemotherapeutic prodrugs, including cyclophosphamide and ifosfamide, are metabolized in the liver by a cytochrome P450 (CYP)-catalyzed prodrug activation reaction that is required for therapeutic activity. Preclinical studies have shown that the chemosensitivity of tumors to these prodrugs can be dramatically increased by P450 gene transfer, which confers the capab...
متن کاملIdentification of novel enzyme-prodrug combinations for use in cytochrome P450-based gene therapy for cancer.
Gene-directed enzyme prodrug therapy can be used to increase the therapeutic activity of anti-cancer prodrugs that undergo liver cytochrome P450 (CYP)-catalyzed prodrug to active drug conversion. The present report describes a cell-culture-based assay to identify CYP gene-CYP prodrug combinations that generate bystander cytotoxic metabolites and that may potentially be useful for CYP-based gene...
متن کاملIsophosphoramide mustard analogues as prodrugs for anticancer gene-directed enzyme-prodrug therapy (GDEPT).
Two types of prodrugs, benzyl analogues of isophosphoramide mustard (iPAM), activated by cytochrome P450, and acylthioethyl analogues, activated by esterases, were designed. In contrast to iPAM that hydrolyse rapidly, the examined compounds are stable in phosphate-buffered saline and Tris buffer. Benzyl analogues of iPAM are poor substrates for cytochrome P450, are not cytotoxic and posses no a...
متن کاملIntratumoral activation and enhanced chemotherapeutic effect of oxazaphosphorines following cytochrome P-450 gene transfer: development of a combined chemotherapy/cancer gene therapy strategy.
Cyclophosphamide and its isomer ifosfamide are cell cycle-nonspecific alkylating agents that undergo bioactivation catalyzed by liver cytochrome P-450 enzymes. The therapeutic efficacy of these oxazaphosphorine anticancer drugs is limited by host toxicity resulting from the systemic distribution of activated drug metabolites formed in the liver. Since tumor cells ordinarily do not have the capa...
متن کاملCloning and gene expression of cytochrome P450 gene from Alcanivorax borkumensis Bacterium
Alcanivorax borkumensis is a marine bacterium that has ability to grow on limited substrates that mainly is alkanes. The ability to use wide range of hydrocarbons is advantage of this bacterium to other marine community bacteria. A. borkumensis have two genetic systems for alkane biodegradation. The First system is alkane hydroxylase (alk-B1and alk-B2) and the second system is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicology in vitro : an international journal published in association with BIBRA
دوره 20 2 شماره
صفحات -
تاریخ انتشار 2006